If you need to identify a snake, try the Snake Identification Facebook group.
For professional, respectful, and non-lethal snake removal and consultation services in your town, try Wildlife Removal USA.
Showing posts with label Agkistrodon. Show all posts
Showing posts with label Agkistrodon. Show all posts

Sunday, September 9, 2018

Venom resistance in kingsnakes

A kingsnake eating a rattlesnake
Kingsnakes get their name because they eat other snakes, including venomous snakes like copperheads, cottonmouths, and rattlesnakes. They also eat lots of other kinds of prey, including non-venomous snakes, lizards, turtle eggs, and small mammals.

You often hear people say that kingsnakes are resistant or immune to the venom of copperheads, cottonmouths, and rattlesnakes. There is a subtle difference between the meaning of these two words.

Resistance is any physiological ability to tolerate or counteract the effects of a toxin or disease. Like many things in biology, resistance is not an all-or-nothing status, but a gradient. High enough resistance can result in immunity, where the toxin or disease has negligible or no effects.

A kingsnake eating a cottonmouth
Individuals can acquire resistance through repeated exposure to low doses of a toxin. The immune system recognizes the toxin as foreign and attacks it. It forms a memory of each attack and stores the pattern for later, which makes later responses to the same toxin quicker and more effective. If the toxin dose is later increased, the memory is reinforced & may become stronger. This is how antivenom is made, how people become resistant to snake venom, and also how vaccines against infectious diseases work.1

It is not how kingsnake resistance to viper venom works. Kingsnake resistance is evolved rather than acquired. This means that kingsnakes are born resistant to venom. As far as we know, their resistance levels are fixed for life & don’t change with age or exposure. This has happened over a long time through natural selection, over many generations of kingsnakes. We don't actually have a very exact  understanding of the physiological and molecular mechanisms behind how kingsnakes resist the toxic effects of viper venom. At least some of their resistance comes from antibodies—chemicals in their blood that interfere with the venom—because mice injected with kingsnake blood survive viper venom better than those that aren't, and the chemical composition of kingsnake blood changes after exposure to viper venom.

A kingsnake eating a western hognose snake
Any time a weapon appears, there is potential for counter-weapons (i.e. resistance and immunity) to appear in response. This happens through a process called a co-evolutionary arms race2. Just as the United States and the Soviet Union were involved in an arms race centered around nuclear weapons during the Cold War, so are venomous snakes and their prey & predators involved in arms races centered around their primary weapon—venom.

A major difference is that, unlike nations or humans, animals cannot plan for the future and decide to invest more energy in research & development of novel or better weapons technology for future generations. Instead, co-evolutionary arms races happen through natural selection. What start out as tiny variations in toxin resistance can be magnified over many generations. 

A kingsnake and a copperhead biting one another
When vipers were first evolving their front fangs, defensive bites became a new option for them. At first, their predators were probably not very good at resisting the effects of the venom, especially if the predator’s physiology was similar to that of their prey, and venom would have made a very good defense mechanism. Vipers would sometimes be killed and eaten, but many predators later died from their bites. Kingsnake predators that were slightly better able to tolerate the effects of the venom were more likely to survive. Eventually, all the kingsnakes without these venom resistance traits had been killed by vipers that they tried to eat, and only the resistant ones remained. On the other side, vipers that had venom with toxins that were, for example, slightly more painful or fast-acting, might have been more likely to survive a predatory attack. Thus, the arms race escalates. Vipers also exhibit flipping, jerking, “body bridging” and other escape behaviors as a defense against kingsnakes—suggesting, since they do not try to bite kingsnakes in defense, that their venom is essentially useless as an anti-kingsnake defense mechanism by now and that kingsnakes have “won” this arms race.

A mongoose eating a boomslang
This is why kingsnakes are immune to the venom of copperheads, cottonmouths, and North American rattlesnakes, but not to the venom of, for example, king cobras or black mambas. Because they live on different continents, there has never been an opportunity for kingsnakes and black mambas to enter into a co-evolutionary arms race (although both prey and predators of black mambas in Africa, such as honey badgers, and of king cobras in India, such as mongeese, have probably accomplished much the same thing).

Kingsnakes also eat coralsnakes, but amazingly they are not immune to the venom of Eastern Coralsnakes (Micrurus fulvius)—kingsnakes injected with coralsnake venom die quickly, and kingsnake blood is 0% effective at neutralizing venom proteins from coralsnakes. Presumably they are able to catch and consume coralsnakes without getting bitten. This could be because coralsnakes often eat other snakes, so perhaps their venom is more difficult for kingsnakes to evolve resistance against. Or, perhaps coralsnakes are rare or dangerous prey for kingsnakes, and it’s possible but not worth it for them to evolve resistance.

A milksnake constricting a Dekay's brownsnake
Not every kingsnake species has been tested against every venom, but we do know that there is variation in which species are immune to which venoms. The only study to compare species in depth injected mice with mixtures of venom & snake blood and measured mouse symptoms and survival. They found that blood from Eastern Kingsnakes (Lampropeltis getula) had the widest spectrum of protection against the venoms tested and was the most effective at neutralizing many rattlesnake venoms, but the least effective against copperhead venom. Blood from kingsnakes from Florida & the Gulf Coast was the most effective at neutralizing the venom of copperheads & cottonmouths. Mole Kingsnake (Lampropeltis calligaster) blood is about 75% as effective at neutralizing Mojave Rattlesnake (Crotalus scutulatus) venom as the blood of Eastern Kingsnakes. Gray-banded Kingsnakes (L. alterna) have moderate neutralization potential against Western Diamondback (C. atrox) venom, but none against Eastern Diamondback (C. adamanteus) venom. Blood from milksnakes (formerly all called L. triangulum) from various locations had intermediate neutralization capacity, with blood from North American milksnakes being about 70% more effective against rattlesnake venom than blood from Central American milksnakes. Another study found that an eastern milksnake injected with copperhead venom died, and one injected with pigmy rattlesnake venom had "no noticeable ill effects", but a lack of replication prevents these results from being particularly meaningful. Somewhat surprisingly, blood from Long-nosed Snakes (Rhinocheilus lecontei), Cornsnakes (Pantherophis guttatus), Mussuranas (Clelia clelia), and Japanese Four-lined Ratsnakes (Elaphe quadrivirgata) was also effective at protecting mice from viper venoms, but blood from pinesnakes (Pituophis) and gartersnakes (Thamnophis) was not. Both vipers and elapids appear to have at least some level of resistance to their own venom, although detailed studies are lacking for most species.

Fight of the Mongoose and the Serpent Armies
An 1850 folio from the Mahabharata
Kingsnakes are just one of many species that have partial immunity or resistance to venom. Hedgehogs, skunks, opossums, and possibly snake-eagles also have resistance to viper venoms, and eels are resistant to sea krait venom. Unlike kingsnakes, we have actually figured out exactly which proteins in opossum blood are responsible for its snake venom neutralization capacity. We also know that mongeese have followed a different route, changing the shape of the toxin targets in their cells rather than putting molecules into their blood to combat the toxins (which means that their immunity cannot be transferred). Other predators of venomous snakes, such as indigo snakes (genus Drymarchon), appear to have gotten away with not evolving immunity, although I was unable to find any actual data on physiological responses of indigo snakes to venom, just statements saying they were not resistant, so it's possible that actual tests have not been carried out.

A mountain kingsnake constricting a skink
Opossum resistance to copperhead venom probably evolved in a similar way to kingsnake resistance, but vipers are also involved in co-evolutionary arms races with their prey. Many rodent prey of North American vipers are resistant, including wood rats, prairie voles, and ground squirrels. Think of how the U.S. during the Cold War had to balance foreign policy not just with the Soviet Union, but also with other nations. The emerging foreign policy is a compromise, just as the venom that evolves is a compromise of selection pressures from predators and prey. Resistant prey may select for venoms that are better at quickly incapacitating, whereas resistant predators may select for venoms that are less deadly and more painful; it’s difficult to predict exactly what will happen without knowing the exact mechanism of resistance. Sometimes selection from predators and prey may act in the same direction, other times in opposite directions. The details of these processes are what evolutionary biologists study on a day-to-day basis.



1 Creating a vaccine against snake venom is harder than creating one against an infectious disease that is caused by a virus or a bacterium. There are pit viper venom vaccines available for dogs and horses, made from the venom of Western Diamondback Rattlesnakes, but none are available for humans. Additionally, the canine vaccines must be given twice per year, immediate veterinary care is still required, & protection against other species of venomous snakes is poor, so the technology has a long way to go.



2 The most famous co-evolutionary arms race is between toxin-resistant gartersnakes & tetrodotoxin-defended newts in the Pacific Northwest of the US & Canada, although there are many others, such as that between most pathogens & the immune systems of their hosts, between brood parasites such as cuckoos & their hosts, and between bad-tasting plants and herbivores.


ACKNOWLEDGMENTS

If you want to know more, I'd suggest chapter 3 of Christie Wilcox's book Venomous, from which I drew while researching & writing this article. Thanks to Connie Wade, Pierson Hill, Alan Cressler, Joe McDonald, Elana Erasmus, and the Los Angeles County Museum of Art [public domain] via Wikimedia Commons for providing their images for this article. Thanks to Laura Connelly for reading a draft of this article.

REFERENCES

A kingsnake eating a ringneck snake
Barchan, D., S. Kachalsky, D. Neumann, Z. Vogel, M. Ovadia, E. Kochva, and S. Fuchs. 1992. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor. Proceedings of the National Academy of Sciences 89:7717-7721 <full-text>

Bdolah, A., E. Kochva, M. Ovadia, S. Kinamon and Z. Wollberg. 1997. Resistance of the egyptian mongoose to sarafotoxins. Toxicon 35:1251-1261 <abstract>

Bonnett, D. E. and S. I. Guttman. 1971. Inhibition of moccasin (Agkistrodon piscivoris) venom proteolytic activity by the serum of the Florida king snake (Lampropeltis getulus floridana). Toxicon 9:417-425 <abstract>

Carpenter, C. C. and J. C. Gillingham. 1975. Postural responses to kingsnakes by crotaline snakes. Herpetologica 31:293-302 <PDF>

Cates, C. C., E. V. Valore, M. A. Couto, G. W. Lawson, and J. G. McCabe. 2015. Comparison of the protective effect of a commercially available western diamondback rattlesnake toxoid vaccine for dogs against envenomation of mice with western diamondback rattlesnake (Crotalus atrox), northern Pacific rattlesnake (Crotalus oreganus oreganus), and southern Pacific rattlesnake (Crotalus oreganus helleri) venom. American Journal of Veterinary Research 76:272-279 <PDF>

Darawshi, S., U. Motro, and Y. Leshem. 2006. The ecology of the Short-toed Eagle (Circaetus gallicus) in the Judean Slopes Israel. The Rufford Foundation, RSG project, detailed final report <project>

de Wit, C. A. 1982. Resistance of the prairie vole (Microtus ochrogaster) and the woodrat (Neotoma floridana), in Kansas, to venom of the Osage copperhead (Agkistrodon contortrix phaeogaster). Toxicon 20:709-714 <abstract>

de Wit, C. A. and B. R. Weström. 1987. Venom resistance in the hedgehog, Erinaceus europaeus: purification and identification of macroglobulin inhibitors as plasma antihemorrhagic factors. Toxicon 25:315-323 <abstract>

Drabeck, D. H., A. M. Dean, and S. A. Jansa. 2015. Why the honey badger don't care: Convergent evolution of venom-targeted nicotinic acetylcholine receptors in mammals that survive venomous snake bites. Toxicon 99:68-72 <academia.edu>

Heatwole, H. and J. Powell. 1998. Resistance of eels (Gymnothorax) to the venom of sea kraits (Laticauda colubrina): a test of coevolution. Toxicon 36:619-625 <PDF>

Holding, M. L., D. H. Drabeck, S. A. Jansa, and H. L. Gibbs. 2016. Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations. Integrative and Comparative Biology 10.1093/icb/icw082 <full-text>

Jansa, S. A. and R. S. Voss. 2011. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers. PLoS ONE 6:e20997 <full-text>

Keegan, H. L. and T. F. Andrews. 1942. Effects of crotalid venom on North American snakes. Copeia 1942:251-254 <PDF>

Keegan, H. L. 1944. Indigo snakes feeding upon poisonous snakes. Copeia 1944:59 <PDF>

Lee, C.-Y., editor. 1979. Snake Venoms. Springer-Verlag, Berlin. <full-text>

Liu, Y.-B. and K. Xu. 1990. Lack of the blocking effect of cobrotoxin from Naja naja atra venom on neuromuscular transmission in isolated nerve muscle preparations from poisonous and non-poisonous snakes. Toxicon 28:1071-1076 <abstract>

Lomonte, B., L. Cerdas, J. Gené, and J. Gutierrez. 1982. Neutralization of local effects of the terciopelo (Bothrops asper) venom by blood serum of the colubrid snake Clelia clelia. Toxicon 20:571-579 <abstract>

Moussatché, H. and J. Perales. 1989. Factors underlying the natural resistance of animals against snake venoms. Memorias do Instituto Oswaldo Cruz 84:391-394 <PDF>

Neves-Ferreira, A. G., N. Cardinale, S. L. Rocha, J. Perales, and G. B. Domont. 2000. Isolation and characterization of DM40 and DM43, two snake venom metalloproteinase inhibitors from Didelphis marsupialis serum. Biochimica et Biophysica Acta (BBA)-General Subjects 1474:309-320 <abstract>

Nichol, A. A., V. Douglas, and L. Peck. 1933. On the immunity of rattlesnakes to their venom. Copeia 1933:211-213 <PDF>

Ovadia, M. and E. Kochva. 1977. Neutralization of Viperidae and Elapidae snake venoms by sera of different animals. Toxicon 15:541-547 <abstract>

Perez, J. C., W. C. Haws, V. E. Garcia, and B. M. Jennings III. 1978. Resistance of warm-blooded animals to snake venoms. Toxicon 16:375-383 <abstract>

Perez, J. C., W. C. Haws, and C. H. Hatch. 1978. Resistance of woodrats (Neotoma micropus) to Crotalus atrox venom. Toxicon 16:198-200 <abstract>

Perez, J. C., S. Pichyangkul, and V. E. Garcia. 1979. The resistance of three species of warm-blooded animals to western diamondback rattlesnake (Crotalus atrox) venom. Toxicon 17:601-607 <abstract>

Philpot, V. 1954. Neutralization of snake venom in vitro by serum from the nonvenomous Japanese snake Elaphe quadrivirgata. Herpetologica 10:158-160 <PDF>

Philpot, V. and R. G. Smith. 1950. Neutralization of pit viper venom by king snake serum. Experimental Biology and Medicine 74:521-523 <abstract>

Philpot, V. B., E. Ezekiel, Y. Laseter, R. G. Yaeger, and R. L. Stjernholm. 1978. Neutralization of crotalid venoms by fractions from snake sera. Toxicon 16:603-609 <abstract>

Poran, N. S., R. G. Coss, and E. Benjamini. 1987. Resistance of California ground squirrels (Spermophilus beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus viridis oreganus): a study of adaptive variation. Toxicon 25:767-777 <abstract>

Swanson, P. L. 1946. Effects of snake venoms on snakes. Copeia 1946:242-249 <full-text>

Voss, R. S. and S. A. Jansa. 2012. Snake-venom resistance as a mammalian trophic adaptation: lessons from didelphid marsupials. Biological Reviews 87:822-837 <PDF>

Weinstein, S. A., C. F. DeWitt, and L. A. Smith. 1992. Variability of venom-neutralizing properties of serum from snakes of the colubrid genus Lampropeltis. Journal of Herpetology 26:452-461 <PDF>

Weldon, P. J. 1982. Responses to ophiophagous snakes by snakes of the genus Thamnophis. Copeia 1982:788-794 <PDF>

Weldon, P. J. and G. M. Burghardt. 1979. The ophiophage defensive response in crotaline snakes: extension to new taxa. Journal of Chemical Ecology 5:141-151 <PDF>

Weldon, P. J. and F. M. Schell. 1984. Responses by king snakes (Lampropeltis getulus) to chemicals from colubrid and crotaline snakes. Journal of Chemical Ecology 10:1509-1520 <ResearchGate>

Werner, R. M. and J. A. Vick. 1977. Resistance of the opossum (Didelphis virginiana) to envenomation by snakes of the family Crotalidae. Toxicon 15:29-32 <PDF>

Wilcox, C. 2016. Venomous: How Earth's Deadliest Creatures Mastered Biochemistry. Scientific American. <official page>

Witsil, A. J., R. J. Wells, C. Woods, and S. Rao. 2015. 272 cases of rattlesnake envenomation in dogs: Demographics and treatment including safety of F(ab')2 antivenom use in 236 patients. Toxicon 105:19-26 <abstract>

Creative Commons License

Life is Short, but Snakes are Long by Andrew M. Durso is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Monday, February 12, 2018

Basics of snake skulls

This article will soon be available in Spanish!

Snakes have a lot more bones than we do, but they have a lot fewer types of bones. Aside from a few boas, pythons, pipesnakes, and blindsnakes with vestigial femurs, most snakes just have a few hundred vertebrae with one pair of ribs each (except in the neck & tail), and a skull.

The snake skull is a remarkable structure. Snake skulls are highly kinetic, with a lot more moving parts than our skulls. Human skulls have just one movable part: the temporomandibular joint, which opens and closes your mouth. Snake skulls have many joints and moving parts; they can move the left and right sides of their jaws independently, as well as the outer (maxilla) and inner (palatine+pterygoid) parts of their upper jaws. Many bones that are tightly knit together in the skulls of most animals are loosely connected by stretchy ligaments in snakes, allowing them to stretch their jaws over huge prey (pardon the goofy music in the linked video). Contrary to the popular phrase, snakes cannot actually "unhinge" their jaws (Harry Greene explains this very well in this video).

The right side of the skull of an alethinophidian snake (nose pointing to the right).
Bones with teeth are the maxilla (mx), palatine (pal), pterygoid (pt), and dentary (d).
From Cundall & Irish 2008. For a key to all abbreviations, click here.
The bones or parts of bones that are shaded are not present in all snake species.
Most snakes have teeth on four pairs of bones, two of which are the same as pairs of bones where humans do: the maxilla (most of our upper jaw) and the dentary (our lower jaw). In addition, almost all snakes have teeth on two bones that in humans form part of the roof of the mouth: the palatine and the pterygoid1, which are connected one in front of the other. This means that snakes have two upper jaws on each side: an outer one (the maxilla) and an inner one (the palatine+pterygoid). If a snake has fangs, they are always on the maxilla2. Some snakes, such as pythons, also have teeth on the premaxilla, where we humans have our incisors, although in most snakes the premaxilla is a part of the snout, has no teeth, and does not act as part of the jaws.
The right half of the skull of a snake, looking up from the bottom (nose pointing to the right).
Bones with teeth are the maxilla (mx), palatine (pal), pterygoid (pt), and dentary (d). The premaxilla (pmx) has no teeth.
From Cundall & Irish 2008. For a key to all abbreviations, click here.The bones or parts of bones that are shaded are not present in all snake species.
Tooth marks left by a
python bite (upper jaw
above, lower jaw below).
You can sometimes see this pattern of tooth marks left behind when a non-venomous snake lets go after biting something, and in fact many resources suggest that you can use the tooth pattern to determine3 whether or not a bite has come from a venomous snake (a viper at least, which are responsible for >99% of venomous snakebites in the USA), since most dangerously venomous snakes have different tooth patterns on account of their fangs, and most of their non-fang teeth don't usually come into contact with the target. I mentioned above that fangs are always on the maxilla, and that's because the maxilla is the primary prey-catching bone in the snake skull. As far as we know, fangs evolved only once, as enlarged teeth at the back of the maxilla in the ancestor of all living colubroid snakes about 75 million years ago. In many living species of snakes, this is still the situation, and the vast majority of these are not dangerous to humans (although some can inflict painful bites if allowed to chew for a few minutes, and a few can be deadly). In at least three cases (vipers, elapids, and atractaspidids), the fangs have moved up to the front of the maxilla, through the developmental suppression of the front part of the maxilla (and its teeth) in the snake embryo. I covered this and the evolution of grooved and hollow fangs in more detail in my article about snake fangs.
The right half of the skull of a snake, looking down from the top (nose pointing to the right).
No teeth are visible. From Cundall & Irish 2008. For a key to all abbreviations, click here.The bones or parts of bones that are shaded are not present in all snake species.
Although most people are most interested in the teeth and fangs, the rest of the snake skull is no less fascinating. The outer and inner upper jaw are connected by a toothless upper jaw bone called the ectopterygoid, which works like a lever to transfer muscular power from the muscles attached to the pterygoid out to the maxilla, which has no muscles of its own. When a snake is eating, the entire upper jaw (inner and outer parts) is raised and moved slightly backward, alternating the left and right sides and pulling the prey into the mouth: the characteristic "jaw-walking" or "pterygoid walk" motion of feeding snakes. So, the front of the pterygoid is attached to the back of the palatine, the ectopterygoid hangs off the outside of the pterygoid, and the maxilla hangs off of the other end of the ectopterygoid. In vipers, whose fangs fold, the maxilla and its fang are pushed forward by the ectopterygoid and pterygoid.

Roughly the same fang movements are made during striking and swallowing. Supratemporal (st), quadrate (q), mandible (ma), pterygoid (pt), ectopterygoid (ec), palatine (pa), prefrontal (pf), maxilla (mx). From Kardong 1977

The independent left and right movement
of the upper jaws of a viper.
Abbreviations as above. From Kardong 1977.
Amazingly, in most snakes there is no direct connection between the upper jaws and the braincase4. Instead, the palatine and maxilla are connected to the braincase by long ligaments, which give them great freedom of motion. The front end of the palatine is connected more firmly to the snout, albeit still with some freedom to move. The rear end of the maxilla is also connected by a ligament to the lower jaw. It's really the movements of the palatine and pterygoid that swallow the prey. The lower jaws mainly press the prey against the upper jaws, and the teeth on the dentary and maxilla rarely contact the prey and play little active role in swallowing.

The lower jaws or mandible participate in the process of feeding as well, and unlike in humans they have a loose attachment of the lower jaws to each other at the front of the dentary bones. The dentary bones are connected firmly at the back to the articular bones, which are connected to the quadrate bones at a flexible joint, which are connected to the back of the braincase by the supratemporal bones, also at a somewhat moveable joint. Together with the flexible palato-maxillary apparatus ("upper jaws"), this three-part lower jaw allows snakes to open their mouths very wide, walk their heads over, and consume things that are as big as they are without breaking them into smaller pieces or using their non-existent hands. The quadrate also attaches to the columella, which is the sole inner ear bone in reptiles; thus, the lower jaw also conducts sound to the ear.

So there you have it. The snake skull is divided into four functional units: the braincase, the snout, the palato-maxillary apparatus ("upper jaws") and the mandibular apparatus ("lower jaws"), each of which can move independently (well, except for the braincase, which is relatively stationary). The upper jaws are divided into two partially separated structural-functional units, a medial swallowing unit and a lateral prey capture unit, both of which work with the lower jaws to accomplish their tasks.

From Frazzetta 1970Click for larger size.
A quick note about a special case: one of my favorite snakes, and one of the first I wrote about on this blog, Casarea dussumeri, are often called Round Island boas, although I chose to use the more apt "splitjaw snakes" in my article. As if the usual kinesis of the snake skull isn't enough, these snakes have a maxilla that is uniquely subdivided into two movable parts, called the anterior and posterior maxilla. The anterior maxilla has 10 teeth and the posterior maxilla has 12. It is thought that the divided maxilla evolved through incomplete development, because the maxilla of other snakes forms in two parts before fusing together in the embryo, and the function is thought to be to help Casarea encircle hard, cylindrical prey such as skinks.

We still have a lot left to learn about snake skulls. We didn't even cover half of the bones in this article. You don't actually so much find snake skulls as you do carefully prepare them. The individual bones are so small and light and fragile that they tend not to fossilize well, nor can they easily be found among the other bones of a snake's skeleton. Even normal cleaning and preparation methods can damage the fragile bones of tiny snake skulls. Thus, there is much left to discover about how they work!

Skull of Natrix natrix from Andjelković et al. 2017. Mobile connections marked with red dashed arrows and circles.Paired bones are shown in yellow (pa – palatine, pt – pterygoid, ec – ectopterygoid, mx – maxilla, st – supratemporal,q – quadrate, cp – compound bone, d – dentary, pf – prefrontal), unpaired bones are shown in green or grey (pmx – premaxilla, na – nasal, b – braincase, smx – septomaxillae & vomers).



1 Although the pterygoids are stand-alone bones in the roof of the mouth of many vertebrates, in humans they are called the pterygoid processes of the sphenoid bone because they are fused to the sphenoid bone.



2 There is one very strange snake, Pythonodipsas carinata from Africa, that has an ungrooved fang on the palatine bone. They aren't any studies of their functional morphology so we don't really know exactly how they use their palatine fangs, but they use constriction to subdue their prey.



3 I don't necessarily recommend this, partly because if you've been bitten then it's too late, and partly because it's better just to learn the few venomous snake species that live in your area than it is to try to follow some "rule" that inevitably has exceptions.



4 Atractaspidids have a ball-and-socket joint between the prefrontal (part of the braincase) and the maxilla, which along with a gap, bridged by a ligament, between the pterygoid and palatine, allows them to "strike" with their fang backwards, with a closed mouth, using just the fang on one side, a useful if terrifying adaptation for envenomating prey in underground burrows. A hook-like ridge on the fang increases the size of the wound, presumably enhancing the absorption of venom.




ACKNOWLEDGMENTS

Thanks to gibby for the use of their photograph.

REFERENCES

Albright, R. G. and E. M. Nelson. 1959. Cranial kinetics of the generalized colubrid snake Elaphe obsoleta quadrivittata. I. Descriptive morphology. Journal of Morphology 105:193-239.

Albright, R. G. and E. M. Nelson. 1959. Cranial kinetics of the generalized colubrid snake Elaphe obsoleta quadrivittata. II. Functional morphology. Journal of Morphology 105:241-291.

Andjelković, M., Tomović, L., & Ivanović, A. 2017. Morphological integration of the kinetic skull in Natrix snakes. Journal of Zoology, 303:188-198 <link>

Cundall, D. 1983. Activity of head muscles during feeding by snakes: a comparative study. American Zoologist 23:383-396.

Cundall, D. and H. W. Greene. 2000. Feeding in snakes. Pages 293–333 in K. Schwenk, editor. Feeding: Form, Function, and Evolution in Tetrapod Vertebrates. Academic Press, San Diego, CA.

Cundall, D. and F. Irish. 2008. The snake skull. Pages 349-692 in C. Gans, A. S. Gaunt, and K. Adler, editors. Biology of the Reptilia. Volume 20, Morphology H. The Skull of Lepidosauria. The University Of Chicago Press, Chicago, Illinois, USA <link>

Frazzetta. T. 1970. From hopeful monsters to bolyerine snakes? The American Naturalist 104:55-72 <link>

Frazzetta, T. 1971. Notes upon the jaw musculature of the Bolyerine snake, Casarea dussumieri. Journal of Herpetology 5:61-63

Irish, F. and P. Alberch. 1989. Heterochrony in the evolution of bolyeriid snakes. Fortschritte der Zoolologie 35:205.

Juckett, G. and J. G. Hancox. 2002. Venomous snakebites in the United States: management review and update. American Family Physician 65:1367-1375 <link>

Kardong, K. 1974. Kinesis of the jaw apparatus during the strike in the cottonmouth snake, Agkistrodon piscivorus. Forma et functio 7:327-354.

Kardong, K. V. 1977. Kinesis of the jaw apparatus during swallowing in the cottonmouth snake, Agkistrodon piscivorus. Copeia 1977:338-348 <link>

Lombard, R. E., H. Marx, and G. B. Rabb. 1986. Morphometrics of the ectopterygoid in advanced snakes (Colubroidea): a concordance of shape and phylogeny. Biological Journal of the Linnean Society 27:133-164 <link>

Maisano, J. A. and O. Rieppel. 2007. The skull of the Round Island boa, Casarea dussumieri Schlegel, based on high-resolution X-ray computed tomography. Journal of Morphology 268:371-384 <abstract>

Raynaud, A. 1985. Development of Limbs and Embryonic Limb Reduction. Pages 59-148 in C. Gans and F. Billett, editors. Biology of the Reptilia. Volume 15. Development B. John Wiley & Sons, New York <link>

Rieppel, O. 2012. “Regressed” Macrostomatan Snakes. Fieldiana Life and Earth Sciences 5:99-103 <link>

Creative Commons License

Life is Short, but Snakes are Long by Andrew M. Durso is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Thursday, June 26, 2014

Why do snakes flick their tongues?


You've probably seen it before - a snake extends its forked tongue, waves it around rapidly, then retracts it. Creepy, right? What do they do that for anyway? Theories explaining the forked tongues of snakes are many and ancient. Aristotle reasoned that it provided snakes with "a twofold pleasure from savours, their gustatory sensation being as it were doubled". 17th century Italian astronomer Giovanni Hodierna thought snake tongues were for cleaning dirt out of their noses. Several writers in the 1600s claimed to have watched snakes catch flies or other animals between the forks of their tongues, using them like forceps. It is a common myth even today that snakes can sting you with their tongues. Watch this video to convince yourself that none of those hypotheses is likely:


A Southern Pacific Rattlesnake (Crotalus oreganus helleri)
touching its tongue tips to the ground
Actually, Aristotle probably got it the closest, as we'll see. Over the last 20 years, members of the laboratory of Kurt Schwenk, a University of Connecticut ecologist and evolutionary biologist, have published a great deal of interesting research on the function of snake tongues. Most animals with tongues use them for tasting, to clean themselves or others, or to capture or manipulate their prey. A few, including humans, also use them to make sounds. Snakes do not use their tongues for any of these things, although they come closest to tasting. A more accurate description of what a snake uses its tongue for is collecting chemicals from the air or ground so that the snake can smell them. By itself, a snake's tongue can neither smell nor taste. Snake tongues have no taste buds1. Instead, the tongue is best thought of as a specially-shaped chemical collector. This is because the actual smelling - the conversion of the chemicals into electrical signals sent to the brain by way of receptors - takes place not on the tongue but in the vomeronasal or Jacobson's Organ, which is in the roof of the mouth (and, incidentally, also the name of a pretty sweet band). For a long time everyone thought that the tongue delivered chemicals directly to the Jacobson's Organ, because both the Jacobson's Organ and the pathways that lead to it are paired just like the tips of the tongue. Even this recent Encyclopedia Britannica figure falls victim to this assumption (edit: a few days after this article posted, Britannica Earth & Life Science editor John P. Rafferty tweeted me to let me know that they had updated the article, including a new diagram). In fact this is, as Schwenk put it, a red herring.

Instead, x-ray movies have revealed that the tongue does not move inside the closed mouth, but that each side of the tongue deposits the chemicals it has collected onto pads on the floor of the mouth (called the anterior processes of the sublingual plicae, in anatomical jargon) as the mouth is closing. It is most likely these plicae that deliver the sampled molecules to the entrance of the Jacobson's Organ (the vomeronasal fenestrae) when the floor of the mouth is elevated to come into contact with the roof following a tongue flick. Further evidence for this heretical notion is that geckos, skinks, and other lizards lack deeply-forked tongues but deliver chemicals to their vomeronasal organs just fine, and in fact so do turtles and many mammals and amphibians (although in none of these groups is the Jacobson's Organ as well-developed as in squamates).

Cross-sectional structure of one half of the Jacobson's Organ,
including the sensory epithelium, lumen, and mushroom body
From Døving & Trotier 1998
Because it is forked, the tongue of a snake can collect chemical information from two different places at once, albeit places that are fairly close together by human standards. Snakes often spread the tips of their tongues apart when they are extended, sometimes to a distance twice as wide as their head. This is significant because it allows them to detect chemical gradients in the environment, which gives them a sense of direction - in other words, snakes use their forked tongues to help them smell in 3-D. Owls use their asymmetrical ears in this way. Snakes and owls use similar neural circuitry to compare the signal strength delivered from each side of the body and determine the direction that a smell or a sound is coming from. (Humans do this with our hearing too, but we're not as good at it). This ability makes it possible for snakes to follow trails left by their prey or by potential mates. In the 1930s, before guidelines on the ethical use of animals in research were as strict, German biologist Herman Kahmann experimentally removed the forked part of snakes' tongues and found that they could still respond to smells, but that they had lost their ability to follow scent trails.2 Later experiments by John Kubie and Mimi Halpern refined and confirmed this result using the more humane method of blocking the entrance to the Jacobson's Organ on one side and found that these snakes turned in a circle toward the unblocked side when they tried to follow a trail (although one recent experiment that severed the vomeronasal nerve on one side did not support this hypothesis).

Male (left) and female (right)
Copperhead tongue
Figure from Smith et al. 2008
In the 1980s, snake biologist Neil Ford watched how male garter snakes used their tongues when they were following pheromone trails left behind by females. He found that if both tips of the male snake's tongue fell within the width of the trail, the snake continued slithering straight ahead. However, when one tip or the other fell outside the edge of the trail, the snake turned his head away from that tip and back towards the pheromone trail, and his body followed. Following this simple rule allowed the snakes to perform trail-following behavior that was both accurate and directed. If both tongue tips ever touched the ground outside of the trail, the male would stop and swing his head back and forth, tongue-flicking, until he relocated the trail. Snake ecologist Chuck Smith found evidence that male Copperheads have longer, more deeply-forked tongues than females, which presumably enhances their ability to find mates. Although sexual dimorphism is rare in snakes, differences in tongue size are likely to be present other species as well. Scent-trailing is probably also quite helpful to snakes tracking down prey, including for sit-and-wait predators like vipers, which have evolved smelly but non-toxic venom components, about which I've written before, to help them relocate bitten and envenomated prey items. Many lizards that are active hunters also have deeply forked tongues which they spread apart when tongue-flicking, whereas lizards such as geckos and iguanids are mostly either ambush predators or herbivores and have blob-like tongues. Whether following mate or prey, how snakes and lizards determine that they are following the scent trail in the right direction is unknown.

Different types of tongue flicks
From Daghfous et al. 2012
When following a scent-trail, snakes simply touch their tongue tips down to the ground to pick up the chemical information lying there (top panel, left). But snakes can also use a different type of tongue-flick (bottom two panels) to sample airborne chemicals. Snakes often wave their tongues in the air without putting them in contact with anything. The tongue creates self-reinforcing air vortices. Vortices formed in the water by boats drift away from the boat as they form. Bill Ryerson, another student in the Schwenk lab, found that the vortices created in the air by snake tongues have a special property - they do not drift away but rather stay in the vicinity of the tongue, where they can be sampled repeatedly as the tongue skirts the part of each vortex where the air velocity is the highest. Oscillating tongue-flicks are unique to snakes. They usually last 2-3 times longer and can sample 100 times as much air as the simple downward extension of the tongue. The tongue then transfers these molecules to the Jacobson's Organ via the same route described above. Evidence suggests that male Copperheads can also find females using oscillating tongue-flicks to detect airborne pheromones, although the details of how they determine direction using such dispersed and transient odors are poorly understood. We have much to learn about this incredibly advanced sensory system and the role it has played in the evolutionary success of snakes.



1 Snakes do have taste buds, but not on their tongue. They have about 20 taste buds on the roof of their mouth near the opening to the vomeronasal organ. For comparison, humans have about 10,000 taste buds.



2 Before you lambaste Kahmann too badly, you should also know that he supported his part-Jewish University of Munich colleague Karl von Frisch, who later went on to share the 1973 Nobel Prize in Physiology or Medicine for his discovery of honeybee communication, against Hitler's regime.


ACKNOWLEDGMENTS

Thanks to Bill Ryerson for giving such an engaging talk at SICB 2014 and for talking with me after, so that I was inspired to research and write this piece, and to JustNature and Zack Podratz for allowing me to use their photographs and videos.

REFERENCES

Berkhoudt, H., P. Wilson, and B. Young. 2001. Taste buds in the palatal mucosa of snakes. African Zoology 36:185-188 <link>

Daghfous, G., M. Smargiassi, P.-A. Libourel, R. Wattiez, and V. Bels. 2012. The function of oscillatory tongue-flicks in snakes: insights from kinematics of tongue-flicking in the Banded Water Snake (Nerodia fasciata). Chemical Senses 37:883-896 <link>

Døving, K. B. and D. Trotier. 1998. Structure and function of the vomeronasal organ. Journal of Experimental Biology 201:2913-2925 <link>

Ford, N. B. 1986. The role of pheromone trails in the sociobiology of snakes. Pages 261-278 in D. Duvall, D. Muller-Schwarze, and R. M. Silverstein, editors. Chemical Signals in Vertebrates, Vol 4. Plenum, New York <link>

Gove, D. 1979. A comparative study of snake and lizard tongue‐flicking, with an evolutionary hypothesis. Zeitschrift für Tierpsychologie 51:58-76 <link>

Halpern, M. and S. Borghjid. 1997. Sublingual plicae (anterior processes) are not necessary for garter snake vomeronasal function. Journal of Comparative Psychology 111:302-306 <link>

Parker, M. R., B. A. Young, and K. V. Kardong. 2008. The forked tongue and edge detection in snakes (Crotalus oreganus): an experimental test. Journal of Comparative Psychology 122:35-40 <link>

Schwenk, K. 1994. Why snakes have forked tongues. Science 263:1573-1577 <link>

Smith, C. F. 2007. Sexual dimorphism, and the spatial and reproductive ecology of the copperhead snake, Agkistrodon contortrix. PhD Dissertation. University of Connecticut <link>

Smith, C., K. Schwenk, R. Earley, and G. Schuett. 2008. Sexual size dimorphism of the tongue in a North American pitviper. Journal of Zoology 274:367-374 <link>

Ryerson, W. G. and K. Schwenk. 2012. A simple, inexpensive system for digital particle image velocimetry (DPIV) in biomechanics. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 317:127-140 <link>

Young, B. A. 1990. Is there a direct link between the ophidian tongue and Jacobson's organ? Amphibia-Reptilia 11:263-276 <link>

Creative Commons License

Life is Short, but Snakes are Long by Andrew M. Durso is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Wednesday, November 27, 2013

The Truth About Snakebite


Many people live in fear of snakes, especially of venomous species that can inflict a lethal bite. There is evidence that our fear of snakes is innate, because our ancestors have been preyed upon by them for millions of years, even before we were primates. Other evidence suggests a significant learned component to ophidiophobia. Either way, few people today are at risk of being eaten by snakes, but bites from venomous snakes are still fairly common. However, in my experience fear of snakes is way out of proportion to the actual risk they pose, especially among my fellow North Americans. It's surprisingly hard to find good information on the prevalence of venomous snakebite (hereafter, just 'snakebite'), but it's getting easier, and I was able to gather almost 100 papers that include data on the subject, which I've synthesized here. As a result, this article has many footnotes, and because I used so many references to prepare this article I've provided a selected list at the end of this post, with a link to the full list.

Map of snake envenomings per year, from Wikimedia Commons
So how dangerous is a snake bite? If you're bitten by the wrong kind of snake and you're far from help, it's pretty dangerous. But the truth about snakebite is that it's a lot less likely to endanger your life than people think. First of all, you're pretty unlikely to ever get bitten. Worldwide, estimates range from 1.2 million to 5.5 million snakebites annually. Remember, there are several billion people out there, so although those numbers are large, each year over 99.92% of people are not bitten by a venomous snake. These bites result in 420,000-1.8 million envenomings leading to 20,000-94,000 deaths. This probably seems really low, until you realize that unlike when they are biting their prey, snakes that are biting in defense don't inject venom every time (i.e., the bite is "dry"). Depending on the species of snake and the context of the bite, estimates for dry bites range from 8% to more than 80%, with North American rattlesnakes, one of the best studied groups, injecting venom only 20-25% [edit 10/23/2015: I made a mistake here. The source cites two other sources that say that rattlensakes inject venom 75-80% of the time (i.e., 20-25% dry bites), not the other way around as I originally wrote. But, Hayes goes on to say that neither of these sources appear to be based on empirical data, and then he gives some other sources that do. These list rattlesnake and other viper dry bite percentages between 7 and 43% (i.e., injecting venom 57-93% of the time). So, indeed, much higher than the 20-25% I originally listed, but still less than for predatory strikes. I apologize for the error.] of the time when biting in defense, compared to more than 99% of the time for predatory strikes.1 This behavior is partly because the strike itself may startle attacker sufficiently and wasting expensive venom needed to eat is useless, and partly because even injecting venom into an attacker is unlikely to immediately incapacitate it. Most snake venom is fast-acting, but it's not that fast. As a result of these dry bites, a lot of snakebites go untreated and unreported because they fail to produce symptoms, leading the bitten person to assume (correctly) that they are safe or (incorrectly) that the snake was not venomous. This is one major cause of the wide range of numbers given above for the prevalence of snakebite.

Copperheads (Agkistrodon contortrix) bite
a few hundred people a year in my home state of
North Carolina, more than in any other state.
Fatalities are exceedingly uncommon.
Worldwide, about 1 out of every 20 people envenomated by venomous snakes dies from the bite, according to the best available estimates for the prevalence of bites and resulting deaths between 1985 and 2008. Depending on where you live, your chances of surviving a venomous snakebite are really good, although in a few places they're pretty bad. I'm going to focus on the USA because I live here and because we have some of the best data. In the USA, only 1 out of every 500 people bitten by a venomous snake dies as a result, which includes deaths from bites that take place under several special circumstances that we'll discuss later. You're actually safer from venomous snakebite in the USA than in any other country on Earth where venomous snakes kill people, thanks to our excellent medical care, relatively benign venomous snake fauna, and large proportion of the population that live in urban areas where venomous snakes are scarce. There are some countries, such as Canada2 and Norway, where venomous snakebites occur but nobody has apparently been killed by one in recent history, except for people who have been killed by their exotic, captive snakes (more on this later).

Western Diamondback Rattlesnakes (Crotalus atrox)
are large and widespread in the southwestern USA.
Contrary to the popular myth, a recent study showed that
larger rattlesnakes cause more serious bites than smaller ones,
which makes sense because they have more venom to inject

(see also unpublished data from the Hayes lab at
Loma Linda University showing the same trend and also
that smaller bite victims have more serious bites).
How about all the people who are bitten and survive? Being bitten by a venomous snake isn't exactly a pleasant experience. It's been described as feeling like “hitting your thumb with a hammer”, “stepping on a bare electrical wire”, or “being repeatedly stabbed with a knife”. This alone is a good enough reason to avoid snakebite. However, not every venomous snakebite is a recipe for a nightmare. In the USA, most people are bitten by pit vipers (copperheads, cottonmouths, and rattlesnakes). Very few people are bitten by coralsnakes, and I'd be surprised if anyone has ever been bitten by a coralsnake that they didn't first pick up. Pit vipers are generally pretty retiring snakes, a fact observed most poignantly by both the herpetologist Clifford Pope, who called them first cowards, then bluffers, then warriors, and also by Ben Franklin, who wrote of a rattlesnake: "She never begins an attack, nor, when once engaged, ever surrenders...she never wounds 'till she has generously given notice, even to her enemy, and cautioned him against the danger of treading on her."

Figure from Gibbons & Dorcas (2002)
In a field test of these famous anecdotes, Whit Gibbons and Mike Dorcas molested 45 wild cottonmouths (Agkistrodon piscivorus) in South Carolina swamps and found that only 2 in 5 bit their fake hand when picked up, only 1 in 10 bit a fake foot when it stepped on them, and none bit a false leg that stood beside them. In a similar test, Xav Glaudas and colleagues picked up over 335 pigmy rattlesnakes (Sistrurus miliarius) in Florida and found that only 8% bit the thick glove they were wearing. Further evidence to support the fact that vipers are reluctant to bite potential predators comes from anecdotes from snake biologists radio-tracking snakes to study their spatial ecology, in which the biologist has accidentally stood on Timber and Eastern Diamondback Rattlesnakes and Puff Adders without provoking any responses. This makes sense because striking is a last resort for these snakes, which have a lot to lose and very little to gain by it. Although this isn't a perfect simulation of a typical snake-human interaction (these researchers weren't trying to kill the snakes in their experiments, after all), these findings are a good argument in the snakes' defense - if they bite you, they probably had a good reason.

Russell's Vipers (Daboia russelii) are probably
one of the world's most dangerous snakes,
combining a relatively aggressive demeanor
and relatively potent venom with a habitat
and geographic range that overlaps areas of
very dense, rural human population in south Asia.
Although the above news is hopeful, it is of course impossible to predict whether an individual snakebite will end in tragedy, so it is prudent to avoid snakebite at all costs. Each year in the USA, between 2,400 and 4,700 (edit: some sources say up to 8,000) bites occur, putting your chances of being bitten by a venomous snake in the USA at about 1 in 100,000 (1 in 40,000 with higher bite estimate).3 If you live in southern or southeastern Asia, you're more justified in having a fear of snakes. In India, at least 80,000 and possibly as many as 165,000 people are bitten by snakes each year (1 in 7,000-14,000). India's venomous snake fauna isn't that much more diverse than the USA's, but medical care isn't as good, and it has about 4 times as many people, many of whom live in rural areas and work in agricultural or pastoral professions, both of which really increase your chances of being bitten. Even in India, "only" about 10,000-15,000 people a year die from snakebite (edit: a more recent study that estimated snakebite mortality in India using household surveys instead of hospital records came up with a figure of ~46,000 deaths in 2005, which is probably more accurate because many victims elect to use traditional therapy in their village and most do not die in government hospitals, where the data are collected; for a more thoughtful discourse on snakebite in India, click here), meaning that about 4 out of 5 (edit: using the newer data, between 1 in 4 and 1 in 2) snakebite victims survive. Taking into account your chances of being bitten and your chances of dying from the bite, many countries in sub-Saharan Africa, Asia, and Latin America are risky places to live. Snakebite in these places is a legitimate public health concern. The USA is the least risky country in terms of snakebite. The only safer countries are places like Ireland, New Zealand, Madagascar, and oceanic islands in the Pacific & Caribbean, where no venomous snakes occur. Snakebite risk in the USA is thousands of times lower than it is in many parts of the world, and it would be even lower if people modified their behavior in a few key ways, starting with not attempting to kill every snake they see.

The USA (bottom left) is the safest country in the world in terms of snakebite risk.
Countries without any venomous snakes not shown.
Data from Kasturiratne et al. 2008
Click for larger version
You might be surprised to hear that attempting to kill venomous snakes actually increases your risk of snakebite. This masterful post written by David Steen at Living Alongside Wildlife is a good argument for why this is the case. Specifically, the reason is that up to 2/3rds of snakebites in the USA are a direct result of intentional exposure to the snake and could be avoided if the people involved had made different decisions [Edit 16 May 2018: although recently, more well-replicated studies have shown that this figure is actually closer to 20% to 30%. Even so, I think it's safe to say that trying to catch a snake for any reason increases the chances that it will try to bite you. Killing a snake from a distance, e.g. by shooting it, is of course not nearly as risky from a snakebite perspective, but there are other associated risks and plenty of good reasons not to do that.]. These bites resulted from people who were trying to kill snakes or molest them, or who chose to interact with them for some other reason (ranging from snake handling churches to collection for rattlesnake roundups). Although snakebite is an occupational hazard for some, such as zookeepers and herpetologists, the vast majority of Americans are at extremely low risk of snakebite.

Black Mambas (Dendroaspis polylepis) are among
Africa's most dangerous snakes, but they still kill fewer
people than hippos
 or mosquitos
Let's take a closer look at those 5 people a year who die from venomous snakebite in the USA. Not all of these people are hikers, fishermen, and gardeners who fall victim to 'legitimate' bites, as you might assume. This number includes deaths that result from a pair of special cases that deserve special attention. The first is people who keep exotic venomous snakes in captivity in their homes. Although this can be done safely, it isn't always, and it is a little unfair to group these cases in with 'legitimate' bites, envenomations, and deaths from native, wild venomous snakes. It inflates USA snakebite statistics because the risk is not evenly distributed among the entire population and it inflates death statistics because antivenom may not be available for these exotic snakes. About 1 of the 5 deaths each year in the USA can be attributed to these circumstances. The second special case, people who refuse or do not seek treatment after they are bitten, includes some of the bites that also fall under the first case, because some snake owners that keep snakes illegally may not seek treatment out of fear that they will be arrested, fined, or have their animals confiscated. This case also covers religious snake handlers proving their faith, which in many cases entails foregoing treatment. It's harder to put a finger on how many people die in the USA each year from untreated snakebites, but I think it's probably fair to say that most of those people got what was coming to them. Let's not overlook the role of alcohol in people's decisions to interact with venomous snakes: studies show that around 40% of snakebite victims have been drinking. Data on intentionality of exposure to snakes in developing countries is sparse, but I would be willing to bet that exposure in these places is much less intentional, as it once was in the USA.

CroFab antivenom used to
treat most snakebites in the USA
Today in the USA, medical treatment for snakebite is so good (thanks to synthetic antivenoms with few side-effects), and research on snake venom has come so far (with much left to learn!), that there is little justification for the overblown fear bordering on hatred people have of snakes. Progress toward this same goal is being made by some really smart people researching the venom of snakes in developing countries in Africa, south Asia, and Latin America, and figuring out better ways to make antivenom available outside of a hospital setting.

Yet more than 1 in 20 people in the USA have a pathological fear of snakes, as defined by criteria including uncontrollable, greater than justified, and significantly interferes with a person’s routine, occupational or academic functioning, or social activities or relationships. Leading to situations like this recent news story and this bizarre interaction between a man, a gun, and a snake. Risk perception is influenced by many things, including the rarity of the event, how much control people think they have, the adverseness of the outcomes, and whether the risk is voluntarily or not. For example, people in the United States underestimate the risks associated with having a handgun at home by 100-fold, and overestimate the risks of living close to a nuclear reactor by 10-fold. Ironically, evidence suggests that two of these things (how much control you have and how voluntary the risk is) are actually quite high for snakebite, despite popular perception that they are low.

Eastern Brown Snakes (Pseudonaja textilis) are one of
Australia's more dangerous snakes, but even they won't
chase, bite, or attack people without trying to escape
or bluff first. Australia's low population density
also contributes to their low prevalence of snakebite.
Data on fear of snakes in developing countries is lacking, and it is difficult to generalize, but based on the impressions of several people I know who have lived and worked there, most inhabitants of rural areas in developing countries are terrified of snakes. One notable exception is Madagascar, where no venomous snakes occur and it is fady to kill any snake (edit: although apparently superstitions still abound). In contrast, in Australia people seem to have a relatively high level of respect for snakes and don't seem to mess with them solely out of machismo the way they do in the USA. Venomous snakebites are relatively rare, which is remarkable considering that the majority of snakes in Australia are venomous. I heard a story recently about a newly-hired Australian CEO of an American mining company. When the new boss asked about the snake policy, the employees jokingly replied that it was "a No. 2 shovel". The Australian CEO was not amused, because at his previous company Down Under routinely relocated much more dangerous snakes at their job sites. He instituted a company-wide training program to teach safe venomous snake practices. These classes are also available to the general public in some areas, especially in southern Africa.

As people and wildlife come to share more and more space, snake-human interactions are inevitable. The future of conservation will probably be in maximizing compatibility between humans and wildlife rather than preserving pristine areas, we will need to get a lot better about behaving ourselves to keep ourselves safe from the defense mechanisms of wildlife, starting with educating ourselves about the real risks that underlie our fears. Everyone should read these guidelines for snakebite prevention and first aid. I would add to this: don't kill snakes! It only puts you at risk. Don't try to kill them, don't let your friends kill them, don't let your family members kill them. They won't try to kill you. I promise.

For more about snakebite research and treatment, check out Dr. Leslie Boyer's blog and Bill Hayes's snakebite research page.



1 Venomous snakes that are striking at their prey practically always inject venom, and some evidence suggests that they can precisely meter their venom so that they inject exactly the right amount needed to kill each particular prey item, based on its mass. Fortunately for humans, there are no venomous snakes large enough to consider us prey. Dry bites to humans may result from the snake's deliberate decision to withhold venom or from kinematic constraints that reduce the duration and coordination of fang contact when striking a large, vertical object.




2 Although global snakebite statistics frequently list 0 fatalities out of 200-300 snakebites for Canada, this seems not to be quite accurate. In Ontario, at least two people have been killed by Timber Rattlesnakes (Crotalus horridus), a soldier who was bitten at the battle of Lundy's Lane near Niagara Falls in 1814, and an American Indian chief prior to 1850. Two or three people have been killed by bites from Massasaugas (Sistrurus catenatus) in Ontario, all before 1962, and between 0 and 10 people were bitten annually from 1971-2007, mostly men aged 10-29
. In 1981, a man who was "quite intoxicated" was killed by a bite from a Northern Pacific Rattlesnake (Crotalus oreganuson the Nk’meep reserve near the town of Osoyoos in British Columbia's Okanagan Valley. He was the first person to be bitten by a native venomous snake in BC in over 50 years. The only other Canadian provinces that are home to venomous snakes are the Prairie Provinces of Alberta and Saskatchewan, where no recorded deaths have occurred from Prairie Rattlesnake (Crotalus viridis) bites. So we can conclude that native snakebites in modern Canada are even more infrequent than but follow the same basic pattern as those in the USA.




3 In the US, relative to dying from heart disease (1 in 5), cancer (1 in 7), in a motor vehicle accident (1 in 80), in a fall (1 in 185), from a gunshot (1 in 300), by drowning (1 in 1100), by choking (1 in 4400), from drinking too much alcohol (1 in 10,900), by a sting from a wasp, bee, or hornet (1 in 63,000), from being struck by lightning (1 in 80,000), from a dog bite (1 in 120,000), or in an earthquake (1 in 150,000), you are very unlikely to be killed by a snake (1 in 480,000). The only less-likely causes of death are being trapped in a low-oxygen environment (1 in 548,000), being killed by ignition or melting of nightwear (1 in 767,000), and being bitten by a spider (1 in 960,000). These odds are for your entire lifetime; your annual chance of being killed by a venomous snake is more like 1 in 50 million. Worldwide, they're more like 1 in 200,000, which is a lot higher but still pretty low overall.


ACKNOWLEDGMENTS

Thanks to Julia Riley and James Baxter-Gilbert for providing me with information on deaths from snakebite in Canada, to Wes Anderson, James Van Dyke, and Xav Glaudas for sharing with me with their impressions of people's fear of snakes outside of North America, and to Matt Clancy, John Worthington-Hill, Larsa D.Todd Pierson, and Pierson Hill for the use of their photography. If you're so inclined, check out David Steen's post on why it doesn't make sense to kill venomous snakes in your yard here and Jessica Tingle's historical view of the subject here.

SELECTED REFERENCES
(click here for a longer list of references pertaining to snakebite [last updated February 2017])

Scientific illustrator Liz Nixon made this infographic
featuring facts in this post!
Click here for a larger version.
Bellman, L., B. Hoffman, N. Levick, and K. Winkel. 2008. US snakebite mortality, 1979-2005. Journal of Medical Toxicology 4:43 <link>

Gibbons, J. W. and M. E. Dorcas. 2002. Defensive behavior of Cottonmouths (Agkistrodon piscivorus) toward humans. Copeia 2002:195-198 <link>

Glaudas, X., T. M. Farrell, and P. G. May. 2005. The defensive behavior of free–ranging pygmy rattlesnakes (Sistrurus miliarius). Copeia 2005:196-200 <link>

Hayes, W. K., S. S. Herbert, G. C. Rehling, and J. F. Gennaro. 2002. Factors that influence venom expenditure in viperids and other snake species during predator and defensive contexts. Pages 207-234 in G. W. Schuett, M. Höggren, M. E. Douglas, and H. W. Greene, editors. Biology of the Vipers. Eagle Mountain Publishers, Eagle Mountain, UT <link>

Isbell, L. A. 2006. Snakes as agents of evolutionary change in primate brains. Journal of Human Evolution 51:1-35 <link>

Janes Jr, D. N., S. P. Bush, and G. R. Kolluru. 2010. Large snake size suggests increased snakebite severity in patients bitten by rattlesnakes in southern California. Wilderness and Environmental Medicine 21:120-126 <link>

Juckett, G. and J. G. Hancox. 2002. Venomous snakebites in the United States: management review and update. America Family Physician 65:1367-1375 <link>

Kasturiratne, A., A. R. Wickremasinghe, N. de Silva, N. K. Gunawardena, A. Pathmeswaran, R. Premaratna, L. Savioli, D. G. Lalloo, and H. J. de Silva. 2008. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Medicine 5:e218 <link>

Morandi, N. and J. Williams. 1997. Snakebite injuries: contributing factors and intentionality of exposure. Wilderness and Environmental Medicine 8:152-155 <link>

Parrish, H. M. 1966. Incidence of treated snakebites in the United States. Public Health Reports 81:269-276 <link>

Ruha, A.-M., K. C. Kleinschmidt, S. Greene, M. B. Spyres, J. Brent, P. Wax, A. Padilla-Jones, and S. Campleman. 2017. The epidemiology, clinical course, and management of snakebites in the North American Snakebite Registry. Journal of Medical Toxicology 13:309-320. <link>

Swaroop, S. and B. Grab. 1954. Snakebite Mortality in the World. Bulletin of the World Health Organization 10:35-76 <link>

Tierney, K. J. and M. K. Connolly. 2013. A review of the evidence for a biological basis for snake fears in humans. The Psychological Record 63:919-928 <link>

Van Le, Q., L. A. Isbell, J. Matsumoto, M. Nguyen, E. Hori, R. S. Maior, C. Tomaz, A. H. Tran, T. Ono, and H. Nishijo. 2013. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1312648110 <link>

Walker, J. P. and R. L. Morrison. 2011. Current management of copperhead snakebite. Journal of the American College of Surgeons 212:470-474 <link>

Wasko, D. K. and S. G. Bullard. 2016. An Analysis of Media-Reported Venomous Snakebites in the United States, 2011-2013. Wilderness and Environmental Medicine 27:219-226. <link>

Creative Commons License

Life is Short, but Snakes are Long by Andrew M. Durso is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.