If you need to identify a snake, visit the Snake Identification Facebook group.
For professional, respectful, and non-lethal snake removal and consultation services in your town, visit Wildlife Removal USA.

Saturday, November 10, 2012

Snakes that polish their scales, and why they do it

Psammophis schokari eating a lizard, Phrynocephalus
, in Kazakhstan
I really like these snakes, and they have about them a pretty interesting mystery. In the tribe Psammophiini (in family Lamprophiidae), there are at least 50 species of snake in 8 genera native to Africa, the Mediterranean, the Middle East, and central Asia. They are united by several unusual synapomorphies, the most unique of which is the presence of a morphological feature called the external narial valve. This structure, located in the loreal region between the eye and the nostril, is the outlet of a special nasal gland that secretes fluid containing long-chain fatty acids. The function of this secretion is enigmatic. Some experiments show that it can serve to retard evaporative water loss, and some evidence suggests that some of these molecules could be pheromones used in marking territories. Territoriality is only slightly less non-existent among snakes than herbivory, but according to some it is apparently present among certain psammophines, few of which have been well-studied in the wild. Aside from a very interesting study suggesting that releasing small mammals from competition with large herbivores can indirectly increase the abundance of their snake predators (including Psammophis mossambicus), we don't know much about their ecology, but careful observations have revealed a little about the lives of these intriguing snakes.

Subadult Montpellier snake, Malpolon monspessulanus
The external narial valve was described in 1956 by renowned Russian herpetologist Ilya Darevsky, the second person ever to earn a PhD in the Soviet Union and the discoverer of parthenogenesis and polyploidy in reptiles. Darevsky described the gland from a specimen of the Montpellier snake (Malpolon monspessulanus), and such glands have now been reported from all eight genera in the Psammophini. In addition to the gland, psammophines also share peculiar hemipene morphology - that is, the male reproductive organs are unusually thin and smooth for an advanced snake, most of which possess thick, spiny hemipenes that enable prolonged copulation. Sexual dimorphism is also quite pronounced in many of these snakes, although not of tail length (typically, the tails of male snakes are longer and thicker than those of females). For example, male M. monspessulanus are stout, uniformly colored, and up to 2.3 m long, whereas females are slender, spotted, and reach only 1.4 meters.

Beginning in 1898, the earliest observations of these snakes mention their peculiar behavior. Psammophines press the outlet of their narial valve to their skin and thoroughly apply a coating of colorless, fast-drying valve secretion all over their body. Watch this Malpolon insignitus to get an idea, because it's hard to describe.

This behavior has been variously called self-rubbing, self-polishing, or  grooming, and seems to be present in all species of psammophine observed. Several keepers in Europe have made extensive efforts to acquire and videotape species of psammophines, and self-rubbing has now been documented in seven of the eight genera. More intriguing, conspecific psammophines housed together occasionally rub one another, presumably anointing the other snake with secretion from their narial valve. What could this mean?

Psammophis leightoni from Namibia
Several hypotheses have been put forth to explain this unique and intriguing behavior. To date, none have been sufficiently tested to unequivocality, nor are they mutually exclusive. Prior to the 1970s, the prevailing thought was that, since psammophines generally inhabit arid regions, the gland might aid in salt excretion, evaporative cooling, or water retention. In 1978, William Dunson and colleagues published their work on the histology of the gland, and concluded that it did not contain the specialized cytological features associated with salt secretion in the salt glands of reptiles such as sea snakes and marine iguanas. Dunson also characterized the chemical composition of the secretion for the first time, and suggested that the long-chain fatty acids he found might help retard water loss through the skin.

Dunson tested five Malpolon to see if their dermal water loss was unusually low, and indeed it was, approximately ten times lower than that of Kingsnakes (Lampropeltis getula), although water loss rate varied depending on where in the shedding cycle the snakes were. Malpolon also lost proportionally more water via the mouth and cloaca (and less via the skin) than did other reptiles. Dunson also kept Malpolon without giving them access to water, and they did not lose weight, indicating that they were capable of obtaining all the water they needed from their prey. In another experiment, he showed that dehydrated Malpolon did not secrete salt from their narial valve. He made the interesting observation that several frog species of the genus Phyllomedusa decrease their dermal water loss by wiping lipid secretions from skin glands over the surface of their skin:

Could psammophids be accomplishing the same thing with their narial valve secretions? Dunson did not test whether snakes that had just applied the secretion lost less water than those that had not. The snakes polish themselves frequently, especially after ecdyisis and feeding, so water loss rate could be tracked over time. 

Other mysterious pits have been described from the head scales of psammophines: parietal pits on the top of the head and infralabial pits on the lower jaw, both of which seem to be sporadically occurring. Series of shed skins from the very same snake sometimes show these features and sometimes do not. Because histology is lacking for these features, it is difficult to say what they might represent.

Dipsina multimaculata [Edit: this photo is actually of a
juvenile mole snake, Pseudaspis cana, which is not a
psammophine and does not polish its scales]
Because of the remote areas inhabited by many of these snakes, most studies to date are insufficiently replicated to permit concrete conclusions about the function of the polishing behavior. Furthermore, determining the sex of living psammophines is quite difficult on account of their small hemipenes, so behavioral studies are often hampered by inadequate knowledge of the sex of the animals involved. Observations of captive psammophines suggest that these snakes have complex social behaviors, not the least of which is their tendency to polish one anothers' scales. Could this behavior represent mate guarding? A nuptial gift from males to females of fatty acids to help them avoid water loss during pregnancy? Do these snakes mark their territories? Only replicated, scientific studies will tell; until then, competing hypotheses will continue to wax on and wax off.


Thanks to Heather Heinz for drawing my attention to this fascinating system, to Jane Bugaeva for translating Darevsky's 1956 article from Russian, and to photographers Bernard Dupont, Altyn Emel, Michael & Patricia Fogden, and Jeremy Holden, and videographer Ton Steehouder.


Microdermatoglypic SEM photograph of Dipsina scale.
The lipid layer covering the scale is visible.
From de Pury 2010
Darevsky IS (1956) O stroyenni i funktsionirovani nosovoy zhelezy u yashtsheritsnoy zmei Malpolon monspessulanus Herm. (Reptilia, Serpentes). [On the structure and function of the nasal gland in the lizard snake Malpolon monspessulanus Herm. (Reptilia, Serpentes)] Zoologicheskij Zhurnal-Moskva 35:312-314

Dunson WA, Dunson MK, Keith AD (1978) The nasal gland of the Montpellier snake Malpolon monspessulanus: fine structure, secretion composition, and a possible role in reduction of dermal water loss. Journal of Experimental Zoology 203:461-473

de Grijs P (1898) Beobachtungen an reptilien in der gefangenschaff. Zoologischer Garten 39:233-247

de Haan CC, Aymerich M (2012) Des comportements frotteur et marqueur, pour la chasse et la vie sociale. In: Aymerich M (ed) A la Découverte de la Faune du Maroc Oriental

de Haan CC, A Cluchier (2006). Chemical marking behaviour in the psammophiine snakes Malpolon monspessulanus and Psammophis phillipsi. Proceedings of the 13th Congress of the Societas Europaea Herpetologica, 211-212. <link>

Mimophis mahfalensis killing a chameleon in Madagascar
de Haan CC (2003) Extrabuccal infralabial secretion outlets in DromophisMimophis and Psammophis species (Serpentes, Colubridae, Psammophiini). A probable substitute for ‘self-rubbing’ and cloacal scent gland functions, and a cue for a taxonomic account. Comptes Rendus Biologies 326:275-286. <link>

de Pury S (2010) Analysis of the Rubbing Behaviour of Psammophiids: A Methodological Approach. PhD dissertation, Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn, Switzerland.

McCauley, D. J., Keesing, F., Young, T. P., Allan, B. F. & Pringle, R. M. 2006: Indirect effects of large herbivores on snakes in an African savanna. Ecology 87, 2657-2663. <link>

Creative Commons License

Life is Short, but Snakes are Long by Andrew M. Durso is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.


David Steen said...

Andrew, thanks...learned a lot about something new to me. But what really caught my eye was your mention that psammophines are apparently territorial. I couldn't track down a definitive citation on this...Huang et al. (2011. PNAS. 108:7455-7459) note, " Territoriality (site defense) is rare in snakes, although anecdotal reports on African elapids and psammophines (17, 18) suggest that other snake taxa also may exhibit territorial behavior; such possibilities warrant further investigation". Is there more compelling evidence?


17. De Haan CC. Dimorphism et comportement sexuel chez Malpolon monspessulanus: Considerations sur la denomination subspecifique insignitus. Bull Soc Herpetol France. 1984;30:19–26.
18. de Haan CC. Extrabuccal infralabial secretion outlets in Dromophis, Mimophis and Psammophis species (Serpentes, Colubridae, Psammophiini). A probable substitute for ‘self-rubbing’ and cloacal scent gland functions, and a cue for a taxonomic account. C R Biol. 2003;326:275–286. [PubMed]

Andrew Durso said...


Thanks for the comment. Great question. I also spent a lot of time trying to track down a definitive citation, and was unable to find it. Darevsky 1956, written in Russian, is cited by de Haan along with de Haan's personal observations as evidence, but I was unable to find a translation. De Haan's papers do not include any data, photos, etc about the nature of the territoriality, just observations (he claims to have observed the phenomenon in Malpolon). At best, I'd said the evidence is unsubstantiated at this point.

Bree said...

I found a snakeskin in my home today!!!! Yikes!!! I can send you pics to help me identify!

Andrew Durso said...

Bree, cool! Yes, please send pictures and hopefully I can help. amdurso@gmail.com

Westley Price said...

Very interesting read that I simply came across by accident.

One correction is that your picture of D. multimaculata is in fact a juvenile Pseudaspis cana. The sharp rostal on Mole Snakes and their bold juvenile pattern leads to a lot of misidentifications.

Andrew Durso said...

Thanks for the kind words, Westley! Glad you found it.

It certainly could be; I don't have much experience with southern African snakes. The photo was taken by Bernard Dupont and is used here under a Creative Commons 2.0 license. On his Flickr page it is identified as D. multimaculata along with two other photos (here and here) of the same snake.

Andrew Durso said...

Westley, thanks, I've looked into it and confirmed your ID. I've changed the caption above.