If you need to identify a snake, try the Snake Identification Facebook group.
For professional, respectful, and non-lethal snake removal and consultation services in your town, try Wildlife Removal USA.

Monday, August 27, 2012

Squirrel v. rattlesnake

This article is part of a series highlighting new research in snake biology presented by herpetologists at the World Congress of Herpetology VII in Vancouver, British Columbia. If you want to learn more about the WCH, check out the June 2012 issue of Herpetological Review, or follow the Twitter hashtag #wch2012, with which I will tag all posts in this series.


It might seem like a lopsided contest, but in the majority of interactions between Northern Pacific Rattlesnakes (Crotalus oreganus) and California ground squirrels (Spermophilus beecheyi), the squirrels walk away with their lives. This surprising result come from Rulon Clark, who in his talk during the venomous snake evolution session of the WCH7 last week filled us in on the latest work from his behavioral ecology lab at San Diego State University. Building on the work done by mammalogists Richard Coss and Don Owings at UC Davis, the Clark lab studies what ground squirrels are trying to say to their rattlesnake predators. You see, when a ground squirrel encounters a rattlesnake, it performs a behavior known as 'tail-flagging'. You can see an example of this behavior in the first half of this video:



and the potential consequence of not exhibiting it in the second half! It's been apparent for almost 35 years now that tail-flagging adult squirrels are safer from rattlesnakes than squirrels that don't perform this behavior, but why?

Dr. Clark enumerated several hypotheses that his lab has tested and falsified:
  • tail-flagging does not appear to be a form of quality advertisement, like stotting in ungulates, because its use is not correlated with the health or vigor of the squirrel
  • tail-flagging does not appear to result in predator confusion or misdirection, because the rattlesnakes that strike at tail-flagging squirrels are equally accurate in their strike direction as those that strike at squirrels that aren't tail-flagging
  • tail-flagging does not appear to be a form of harassment, like mobbing in birds & other animals, because the squirrels never attack rattlesnakes if the snakes are free-ranging (although they will if the snakes are caged, as they were in early experiments) and eventually leave the snakes alone after tail-flagging at them for a while.
Additionally, the tail-flag display is frequently given in the absence of a rattlesnake, as if to probe for potential predators nearby. So how is tail-flagging helpful? By videotaping countless hours of snake-squirrel interactions using stationary cameras - fortunately, rattlesnakes are fairly stationary themselves - Clark's group thinks they have the answer.

Crotalus oreganus from Utah
First, the squirrels are probably advertising their perception of the snakes, both to the snakes themselves and to each other. This is likely because tail-flagging by one squirrel increases the vigilance of other squirrels in the area. Furthermore, rattlesnakes that have been tail-flagged are actually more likely to abandon their ambush sites. Both these things only happen, however, when the tail-flagging squirrel is an adult. Similarly, we respond more seriously to cries of a fire by an adult than by a child. Juvenile squirrels also tail-flag, but presumably they are just practicing, so adults apparently do not take them seriously.

Second, the adult squirrels are probably also advertising their vigilance to the snakes. This is likely for two reasons: 1) the snakes are less likely to strike an adult tail-flagging squirrel than a non-tail-flagging one, and 2) if they do, squirrels that tail-flagged are more likely to successfully dodge the rattlesnake's strike. That's right - these ground squirrels can actually evade the snake's strikes. Don't believe it?



I hardly can either, but wow, that squirrel pulled a 180 and totally avoided what should have been a lethal strike. Although the squirrel in that video wasn't tail-flagging, Clark's group has shown that within about one foot of a rattlesnake, tail-flagging squirrels are more likely to dodge strikes successfully. As a result, rattlesnakes are less likely to strike at a tail-flagging squirrel - not because the energy cost is too high, but because a strike will surely cause the squirrel to run off, while waiting might result in the squirrel making a mistake by getting too close. After all, once a snake has been tail-flagged, it might as well move ambush sites, because the local squirrels are now aware of its presence.

In addition to employing highly effective perception and vigilance advertisement behaviors, those darn squirrels have also evolved to anoint their fur with rattlesnake scent! They get this odor from chewing up shed rattlesnake skins. Barbara Clucas showed that the snake scent application did not deter other squirrels or help reduce ectoparasites, bolstering the case that it is a form of olfactory camouflage that serves to reduce squirrel detectability to snake predators or to repel other rattlesnakes motivated to avoid hunting in the same area as a conspecific.

Figure from Clucas et al. 2008

By now, I imagine the snake biologists in the audience are itching to see a snake actually get one for once. Here you go:



If you want to see more videos and stay current on the Clark lab's research, subscribe to their Youtube channel or to Strike, Rattle, & Roll, a rattlesnake behavior blog published by Clark lab PhD student Bree Putman.

ACKNOWLEDGMENTS

Thanks to Rulon Clark for his helpful review of this article.

REFERENCES

Barbour, M. A. and R. W. Clark. 2012. Ground squirrel tail-flag displays alter both predatory strike and ambush site selection behaviours of rattlesnakes. Proceedings of the Royal Society B: Biological Sciences doi:10.1098/rspb.2012.1112. <link>

Clark, R. W., S. Tangco, and M. A. Barbour. 2012. Field video recordings reveal factors influencing predatory strike success of free-ranging rattlesnakes (Crotalus spp.). Animal Behaviour 84:183-190. <link>

Clucas, B., D. H. Owings, and M. P. Rowe. 2008. Donning your enemy's cloak: ground squirrels exploit rattlesnake scent to reduce predation risk. Proceedings of the Royal Society B: Biological Sciences 275:847-852. <link>

Coss, R. G. and D. H. Owings. 1978. Snake-directed behavior by snake naive and experienced California Ground Squirrels in a simulated burrow. Zeitschrift für Tierpsychologie 48:421-435. <link>

Owings, D. H. and R. G. Coss. 1977. Snake mobbing by California ground squirrels: adaptive variation and ontogeny. Behaviour 62:50-69. <link>

Rundus AS, Owings DH, Joshi SS, Chinn E, Giannini N (2007) Ground squirrels use an infrared signal to deter rattlesnake predation. Proceedings of the National Academy of Sciences 104:14372-14376 <link>



Creative Commons License

Life is Short, but Snakes are Long by Andrew M. Durso is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Tuesday, August 21, 2012

Goo-eating snakes and the eggs that evade them


I have just returned from attending the Seventh World Congress of Herpetology (WCH7) in Vancouver, Canada. This meeting is held once every four years, always in the same year as the Summer Olympics, from which it differs in several important ways. Although many celebrities attend each, the WCH primarily consists of scientific, rather than physical, displays of prowess. Until a gold medal is given in lizard noosing, herpetologists will continue to present their research at the WCH, as I had the opportunity to do this year. Because of the large number of excellent talks highlighting new research in snake biology, I have decided that the next several articles on LISBSOL will constitute a series inspired by the work of the many herpetologists whom I saw presenting at WCH7. If you want to learn more about the WCH, check out the June 2012 issue of Herpetological Review, or follow the Twitter hashtag #wch2012, with which I will tag all posts in this series (disappointing though it is that herpetologists should be forced to 'tweet' their research rather than 'hiss' or 'croak' it [I couldn't figure out how to spell the sound that alligators make]).

One tradition at WCH meetings is to open each day with a plenary talk, which is an hour-long presentation by a distinguished herpetologist. Of the several plenaries at WCH7, the one that impressed me the most was given on the first day by Karen Warkentin, a herpetologist at Boston University who studies environmentally-cued hatching of amphibian eggs. One of the foundations of her research is that the timing of hatching, a critical life-stage transition in the life of an amphibian (or reptile), should be flexible in order to maximize the likelihood of survival of the young animals. That is, if the egg is safe from predators and pathogens, hatching should be delayed as long as possible (typically until the embryo is as large as it can get without leaving the egg). However, if the egg is in danger, hatching should speed up, as long as the embryo is capable of living outside of the egg. This phenomenon is observed in a variety of reptiles and amphibians, including  the Agalychnis (red-eyed) treefrogs that Dr. Warkentin studies. These frogs lay their eggs on leaves overhanging pools in the Neotropical rain forests, so that when they hatch the tadpoles can drop into the water.

Agalychnis callidryas in amplexus
The primary predators of Agalychnis eggs are wasps and snakes. In the wild, snakes consume as much as 50% of all Agalychnis eggs laid, so it makes sense that there would be strong selection for eggs that could escape snake predation. If a snake or wasp attacks a clutch of eggs, the vibrations trigger the eggs to hatch almost immediately. If that sounds impossible, check out this video of a Parrotsnake (Leptophis) attacking a clutch of eggs:


Look at those little guys hatch! You can see other videos at Dr. Warkentin's website, where you can compare the feeding behavior of Leptophis with that of the Cat-eyed Snake (Leptodeira). Embryos in the last third of their development escape from snake attacks with about an 80% success rate by hatching up to 30% early, which is really remarkable. Furthermore, they can distinguish snake attacks from other sources of vibration, so that they don't hatch every time it rains. To do this, they respond to several non-redundant vibrational cues, including frequency, duration, and their interaction. These cues propagate throughout the jelly matrix of the eggs, so that eggs that have not yet been touched by the snake can escape. In two species of Agalychnis that have reduced jelly, escape success is much lower, because the signals do not propagate as well.

Vibration profile of a snake attack

According to Dr. Warkentin, the snakes do not appear to prefer younger eggs (which would be incapable of hatching early) or to forage preferentially in the rain (when their vibrations might be masked by raindrops). Along with Leptophis and Leptodeira, two other snake genera, Sibon and Dipsas, possess morphological and behavioral adaptations for feeding on frog eggs and other prey items that are essentially 'goo'. Not unlike the southeast Asian pareatids I've covered before, these Neotropical snakes have numerous, long, slender teeth on the dentary (lower jaw), and they have many skeletal and muscular modifications that allow for jaw flexibility beyond even that normally seen in snakes. Extinction of many frogs due to chytrid fungus in Central America has caused dietary shifts and changes in abundance of these snakes.

Sibon argus eating frog eggs

Environmentally-cued hatching in response to vibrations also occurs in the eggs of other treefrogs, centrolenid glass frogs, and African reed frogs. It can also occur in response to other environmental dangers, such as flooding (in salamander and some turtle eggs) and disease (in frog eggs and also in painted turtle hatchlings, which often overwinter in the nest but are more likely to emerge early when infected with sarcophagid fly larvae). This last example comes from the thesis work of Julia Riley at Laurentian University, who presented preliminary results at the WCH. She also found that turtles hatching in nests that were on steeper slopes were more likely to emerge early, possibly to avoid collapse of the nest over the winter. Whether research will one day show that snake eggs also possess environmentally-cued hatching plasticity is an open question, but I suggest that a good system to start looking would be the Nicrophorus beetle hosts. Maybe we'll be hearing about that at WCH8 in Hangzhou, China!

ACKNOWLEDGMENTS

Thanks to Otto Monge, Brad Wilson, and the Warkentin lab website for providing photos and videos.

REFERENCES

Caldwell MS, McDaniel JG, Warkentin KM, 2009. Frequency information in the vibration-cued escape hatching of red-eyed treefrogs. J Exp Biol 212:566-575. <link>

Caldwell, M. S., J. G. McDaniel, and K. M. Warkentin. 2010. Is it safe? Red-eyed treefrog embryos assessing predation risk use two features of rain vibrations to avoid false alarms. Animal Behaviour 79:255-260 <link>

Gomez-Mestre I, Warkentin KM, 2007. To hatch and hatch not: similar selective trade-offs but different responses to egg predators in two closely related, syntopic treefrogs. Oecologia 153:197-206. <link>

Gomez-Mestre I, Wiens JJ, Warkentin KM, 2008. Evolution of adaptive plasticity: risk-sensitive hatching in neotropical leaf-breeding treefrogs. Ecol Monogr 78:205-224. <link>

Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessier AP, Collins JP, 2006. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci USA 103:3165-3170. <link>

Ray JM, Montgomery CE, Mahon HK, Savitzky AH, Lips KR, 2012. Goo-eaters: Diets of the Neotropical snakes Dipsas and Sibon in central Panama. Copeia 2:197-202. <link>

Savitzky AH, 1983. Coadapted character complexes among snakes: fossoriality, piscivory, and durophagy. American Zoologist 23:397-409. <link>

Warkentin, KM, 2005. How do embryos assess risk? Vibrational cues in predator-induced hatching of red-eyed treefrogs. Animal Behaviour 70:59-71. <link>

Warkentin KM, Caldwell MS, McDaniel JG, 2006. Temporal pattern cues in vibrational risk assessment by embryos of the red-eyed treefrog, Agalychnis callidryas. J Exp Biol 209:1376-1384. <link>

Warkentin KM, Caldwell MS, Siok TD, D'Amato AT, McDaniel JG, 2007. Flexible information sampling in vibrational assessment of predation risk by red-eyed treefrog embryos. J Exp Biol 210:614-619. <link>

Warkentin KM, Currie CR, Rehner SA, 2001. Egg-killing fungus induces early hatching of red-eyed treefrog eggs. Ecology 82:2860-2869. <link>



Creative Commons License

Life is Short, but Snakes are Long by Andrew M. Durso is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Scientific American Guest Blog


Check out the piece on toxin-sequestering snakes I was invited to write for the Scientific American Guest Blog!!

http://blogs.scientificamerican.com/guest-blog/2012/08/21/poisonous-snakes-cant-resist-toxic-toad-tucker-or-can-they/

Heterodon platirhinos eating Acris crepitans. Photo by Nick Kiriazis




Creative Commons License

Life is Short, but Snakes are Long by Andrew M. Durso is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

Saturday, August 4, 2012

Stiletto snakes



Atractaspis duerdeni
I've always thought that the atractaspids were a highly interesting group of snakes, deserving of an article or two. During the early stages of my cursory research, however, I found that palaeozoologist Darren Naish, author of the excellent blog Tetrapod Zoology, has already written an article containing what one commenter called "the most comprehensive information on Atractaspids anywhere on the web." Since I didn't think I could top that, I decided to focus on what we've learned about atractaspids since Darren's article came out in 2008. If you want to learn more about the many fascinating adaptations atractaspids have evolved for burrowing and closed-mouth fang-stabbing, including why they're known as والد من سواد ('father of blackness'), among other such macabre names, in Arabic-speaking countries in their native range, you'll want to read that article in addition to this one.

The correct placement of the atractaspids within the snake tree of life has been elusive since their initial description in 1843, when they were placed in the Elapidae alongside cobras and coralsnakes. In later classifications, they have been placed in the Viperidae, the Colubridae, the Lamprophiidae, or in their own family, to which various names have been applied, including Atractaspidae (atractaspids), Atractaspididae (atractaspidids, because why not add in an extra 'id'?), and Atractaspidinae (atractaspidines; this last name referring to a subfamily rather than a family). Once considered to include a wider diversity of snakes, the Atractaspidinae is now comprised of just two genera, the proteroglyphous Homoroselaps (2 species, known as Harlequin Snakes) and the eponymous, solenoglyphous Atractaspis (21 species). Aglyphous and opisthoglyphous snakes formerly included in this group are now assigned to a closely related subfamily, the Aparallactinae, which includes 50 species in nine genera, several of which are deserving of their own articles. This taxonomy is based on part of a larger analysis of advanced snakes undertaken by Alex Pyron and colleagues and published in 2010, and hinted at in earlier analyses such as this one by Kraus & Brown.


Part of the tree presented in Pyron et al. 2010, showing the relationships of atractaspids to other African snakes now placed in the Lamprophiidae. A surprising finding of this paper was that lamprophiids share a common ancestor with the front-fanged elapids, including cobras, sea snakes, and coral snakes, about 44 million years ago.
Morphological work on atractaspids has continued to be carried out by Dave Cundall and his students and colleagues at Lehigh University. I had the opportunity to hang out with Dave a bit recently, and he shared some of his recent findings with me. For instance, he said, the long-held idea that Atractaspis fed predominantly on litters of baby mammals might be only party true. The stomach of some atractaspids, he told me, is almost as long as the entire body, an adaptation that could be construed as functioning to accommodate multiple prey items (pups in a litter) but also large, elongate ones (such as amphisbaenians or caecilians), which also frequently occupy underground spaces where hunting by fang-stabbing is effective. Dave also mentioned that digestion in these snakes takes place, as one might expect, only in the stomach, not in the esophagus, although ingested prey may extend forward into the esophagus if they are too large to fit in the stomach. Differences in the tissue lining these two parts of the digestive system account for a pH change of up to 4 units between the esophagus and the stomach, one of the few clues that these two organs in snakes are derived from separate structures in other vertebrates (since their morphological separation in many snakes is subtle at best). Other discoveries made by Dave and his student Alex Deufel, including how atractaspids, perhaps uniquely among advanced snakes, have traded-off prey transport for maximum fang-stabbing ability, have been described in excellent detail by Darren at TetZoo.

No one is quite sure why, but some Atractaspis also possess extremely elongate venom glands, such as those seen here in a dissected A. fallax.

Other recent work on atractaspids includes advances in understanding their unusual venom chemistry and in treating its effects, including the discovery and production of the first atractaspid antivenom in 2007. In a test of this antivenom conducted at the National Antivenom and Vaccine Production Center in Riyadh, Saudi Arabia, rabbits injected with a lethal dose of Atractaspis venom were saved from death by a pre-injection treatment of any one of three drugs: nitroglycerin, atractaspid antivenom, or bosentan, a drug for the treatment of pulmonary hypertension. However, when the drugs were administered after the venom, as would be the case in an actual snakebite, all rabbits treated with nitroglycerin and half the rabbits treated with atractaspid antivenom died. Only the hypertension drug bosentan protected rabbits from the venom in the realistic scenario, leading the author to conclude that bosentan might have a higher affinity to the venom receptors than either the antivenom or the venom compounds themselves.

Atractaspis engaddensis
Finally, a 2011 study by Katie Moyer and Kate Jackson of Whitman College helped initiate our understanding of how the 21 species of Atractaspis are related to one another. Remarkably, this is the first time someone has investigated this question, and because Moyer & Jackson used morphological data, there are likely to be some changes once DNA sequences for these species become available. Using characteristics of the scale arrangements, they prepared an evolutionary tree that differed from all previous hypotheses about how the species of Atractaspis are related. Although their analysis is limited by the paucity of available data, it represents a starting point for understanding the evolution of this highly unique group of snakes.

ACKNOWLEDGMENTS

Thanks to Michael & Patricia Fogden and Donald Schultz for photographs.

REFERENCES

Abd-Elsalam M, 2011. Bosentan, a selective and more potent antagonist for Atractaspis envenomation than the specific antivenom. Toxicon 57:861-870.

Bourgeois M, 1961. Atractaspis – a misfit among the Viperidae? News Bulletin of the Zoological Society of South Africa 3:29.

Deufel A, Cundall D, 2003. Feeding in Atractaspis (Serpentes: Atractaspididae): a study in conflicting functional constraints. Zoology 106:43-61.

Greene HW, 1997. Snakes: The Evolution of Mystery in Nature. Berkeley: University of California Press.

Ismail M, Al-Ahaidib M, Abdoon N, Abd-Elsalam M, 2007. Preparation of a novel antivenom against Atractaspis and Walterinnesia venoms. Toxicon 49:8-18.

Moyer K, Jackson K, 2011. Phylogenetic relationships among the Stiletto Snakes (genus Atractaspis) based on external morphology. African Journal of Herpetology 60:30-46.

Naish D, 2008. Side-stabbing stiletto snakes. Tetrapod Zoology.
<
http://scienceblogs.com/tetrapodzoology/2008/05/26/sidestabbing-stiletto-snakes/>

Pyron RA, Burbrink FT, Colli GR, de Oca ANM, Vitt LJ, Kuczynski CA, Wiens JJ, 2010. The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Mol Phylogenet Evol 58:329-342.



Creative Commons License

Life is Short, but Snakes are Long by Andrew M. Durso is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.