Click here to read this article in Spanish!
Haga clic aquí para leer este artículo en español!
Click here to read this article in Japanese
日本語版の記事はこちら
Haga clic aquí para leer este artículo en español!
Click here to read this article in Japanese
日本語版の記事はこちら
Crab-eating Snake (Fordonia leucobalia) eating a crab |
A few years ago I wrote an article about southeast Asian crab-eating snakes, the only snakes (at the time) known to break apart their food instead of swallowing it whole. Although I ended that article by wondering how many more strange snake dietary adaptations we might discover, I didn't actually anticipate writing a sequel to that article—it was so unique that the BBC filmed it for their series Life in Cold Blood, and I doubted that anyone would discover another snake that tore apart its prey. You can imagine my surprise when recently I was asked to review a paper about another snake that breaks its food apart! I was also delighted that this snake was a scolecophidian, because I feel that they are underrepresented both on this blog and in snake biology in general. It is a bit unsatisfying that it is the Brahminy Blindsnake (Indotyphlops braminus, formerly known as Ramphotyphlops braminus), the best studied scolecophidian by far by virtue of its enormous range and unusual breeding habits, but I think this exciting discovery could become extended to some or most of the other >400 species of blindsnakes.
A blindsnake with decapitated termite heads stuck to the back of its head |
Late last year, herpetologist Yosuke Kojima, a postdoctoral researcher at Kyoto University, and entomologist Takafumi Mizuno, a graduate student at Kyoto Institute of Technology, made a chance finding. They had been close friends since elementary school and shared an interest in behavioral and chemical ecology. Together, they planned some experiments to learn more about interactions between blindsnakes and their primary prey, ants. Mizuno's lab also kept colonies of termites (in this case, Reticulitermes speratus), which are also eaten by blindsnakes. Blindsnakes are unusual in that they eat many small prey at a time rather than a few large prey infrequently. Blindsnakes often eat 20 or more prey items at a time, and the maximum number of prey items ingested by a single individual is 1,431 for Anilios (Ramphotyphlops) nigrescens from Australia. Because blindsnakes often gorge themselves when feeding in an ant or termite nest, they often eat very quickly, using a raking technique of the mandibles (in leptotyphlopids) or of the maxillae (in typhlopids). Nate Kley's lab at Stony Brook University has taken some fantastic videos of blindsnake feeding techniques.
Time-sequence of a blindsnake ingesting and decapitating a termite worker. From Mizuno & Kojima 2015 Supplementary video here |
As Mizuno fed termites to the blindsnakes, he observed something very unusual. The blindsnakes typically grabbed and swallowed the termites backwards. Most snakes usually swallow their prey head-first, so this was weird enough. But, it gets weirder. Often, when the snake had maneuvered a termite so that only its head stuck out of the snake's mouth, it would rub its face on the bottom of the tank, decapitating the termite. All of the termite soldiers and about half of the termite workers offered to the blindsnakes were decapitated. Occasionally, a snake would regurgitate a termite that it had consumed whole, decapitate it, and re-consume the body. Decapitated termite heads became attached to the back of the snake’s head or were scattered around the bottom of the cage. The snakes never ate the decapitated heads. There did not appear to be a cost to decapitation—whether a snake decapitated a termite or not, the time required to completely ingest it was about 3 seconds. However, twice blindsnakes were observed swallowing termites head-first, which took only about 1-1.5 seconds. This may not seem like a big difference, but when you're eating hundreds or thousands of prey items in one sitting, it can add up!
Intact termite heads in the feces of a blindsnake From Mizuno & Kojima 2015 |
Evidently the raking maxillae of typhlopids are sufficiently dexterous to manipulate prey inside the mouth to position them for decapitation. From Kley 2001 |
ACKNOWLEDGMENTS
Thanks to Brendan Schembri for the use of his photo, and to Takafumi Mizuno and Yosuke Kojima for giving me the opportunity to write about their discovery in advance of its publication and for translating it into Japanese.
REFERENCES
Kley, N.J. 2001. Prey transport mechanisms in blindsnakes and the evolution of unilateral feeding systems in snakes. American Zoologist 41:1321-1337 <link>
Mizuno, T. and Y. Kojima. In press. A blindsnake that decapitates its termite prey. Journal of Zoology 10.1111/jzo.12268 <link>
Prestwich, G.D., B. Bierl, E. Devilbiss, and M. Chaudhury. 1977. Soldier frontal glands of the termite Macrotermes subhyalinus: Morphology, chemical composition, and use in defense. Journal of Chemical Ecology 3:579-590 <link>
Reid, J.R. and T.E. Lott. 1963. Feeding of Leptotyphlops dulcis dulcis (Baird and Girard). Herpetologica 19:141-142 <link>
Mizuno, T. and Y. Kojima. In press. A blindsnake that decapitates its termite prey. Journal of Zoology 10.1111/jzo.12268 <link>
Prestwich, G.D., B. Bierl, E. Devilbiss, and M. Chaudhury. 1977. Soldier frontal glands of the termite Macrotermes subhyalinus: Morphology, chemical composition, and use in defense. Journal of Chemical Ecology 3:579-590 <link>
Reid, J.R. and T.E. Lott. 1963. Feeding of Leptotyphlops dulcis dulcis (Baird and Girard). Herpetologica 19:141-142 <link>
Savitzky, A.H., A. Mori, D.A. Hutchinson, R.A. Saporito, G.M. Burghardt, H.B. Lillywhite, and J. Meinwald. 2012. Sequestered defensive toxins in tetrapod vertebrates: principles, patterns, and prospects for future studies. Chemoecology 22:141-158 <link>
Shine, R. and J.K. Webb. 1990. Natural history of Australian typhlopid snakes. Journal of Herpetology 24:357-363 <link>
Smith, H.M. 1957. Curious feeding habit of a blind snake, Leptotyphlops. Herpetologica 13:102 <link>
Stokes, A.N., A.M. Ray, M.W. Buktenica, B.G. Gall, E. Paulson, D. Paulson, S.S. French, E.D.B. III, and J. E.D. Brodie. 2015. Otter predation on Taricha granulosa and variation in tetrodotoxin levels with elevation. Northwestern Naturalist 96:13-21 <link>
Vidal, N., J. Marin, M. Morini, S. Donnellan, W.R. Branch, R. Thomas, M. Vences, A. Wynn, C. Cruaud, and S.B. Hedges. 2010. Blindsnake evolutionary tree reveals long history on Gondwana. Biology Letters 6:558-561 <link>
Shine, R. and J.K. Webb. 1990. Natural history of Australian typhlopid snakes. Journal of Herpetology 24:357-363 <link>
Smith, H.M. 1957. Curious feeding habit of a blind snake, Leptotyphlops. Herpetologica 13:102 <link>
Stokes, A.N., A.M. Ray, M.W. Buktenica, B.G. Gall, E. Paulson, D. Paulson, S.S. French, E.D.B. III, and J. E.D. Brodie. 2015. Otter predation on Taricha granulosa and variation in tetrodotoxin levels with elevation. Northwestern Naturalist 96:13-21 <link>
Vidal, N., J. Marin, M. Morini, S. Donnellan, W.R. Branch, R. Thomas, M. Vences, A. Wynn, C. Cruaud, and S.B. Hedges. 2010. Blindsnake evolutionary tree reveals long history on Gondwana. Biology Letters 6:558-561 <link>
Life is Short, but Snakes are Long by Andrew M. Durso is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.